Identities Required:
sin(2x)=2sin(x)cos(x)sin(2x)=2sin(x)cos(x)
sin^2(x)+cos^2(x)=1sin2(x)+cos2(x)=1
sin^2(x)=1-cos^2(x)sin2(x)=1−cos2(x)
cos(2x)=cos^2(x)-sin^2(x) =cos^2(x)-(1-cos^2(x))=2cos^2(x)-1cos(2x)=cos2(x)−sin2(x)=cos2(x)−(1−cos2(x))=2cos2(x)−1
Now solving:
sin(2x)/sin(x)-cos(2x)/cos(x)=sec(x)sin(2x)sin(x)−cos(2x)cos(x)=sec(x)
(2sin(x)cos(x))/sin(x)-(2cos^2(x)-1)/cos(x)=RHS2sin(x)cos(x)sin(x)−2cos2(x)−1cos(x)=RHS
2cos(x)-2cos(x)+1/cos(x)=RHS2cos(x)−2cos(x)+1cos(x)=RHS
sec(x)=RHSsec(x)=RHS
QED