Question #d7a8e

1 Answer
May 25, 2017

See Below.

Explanation:

Identity Required:
sin^2(x) +cos^2(x)=1sin2(x)+cos2(x)=1
sin^2(x)=1-cos^2(x)sin2(x)=1cos2(x)

Now solving:
sin(t)/(1+cos(t))=(1-cos(t))/sin(t)sin(t)1+cos(t)=1cos(t)sin(t)
sin(t)/(1+cos(t))*(1-cos(t))/(1-cos(t))=RHSsin(t)1+cos(t)1cos(t)1cos(t)=RHS
(sin(t)-sin(t)cos(t))/(1-cos^2(t))=RHSsin(t)sin(t)cos(t)1cos2(t)=RHS
(sin(t)-sin(t)cos(t))/sin^2(t)=RHSsin(t)sin(t)cos(t)sin2(t)=RHS
(1-cos(t))/sin(t)=RHS1cos(t)sin(t)=RHS
QED