Question #db34a

2 Answers
May 25, 2017

x=pi/6 and (5pi)/6 and x=(3pi)/2

Explanation:

cos2x = sinx

Substitute using the trig identity cos2x = 1-2sin^2x

1-2sin^2x=sinx

Subtract 1-2sin^2x from both sides.

0=2sin^2x+sinx-1

Factor

0=(2sinx-1)(sinx+1)

Set each factor equal to zero and solve.

2sinx-1 = 0 and sinx+1=0

sinx=1/2 and sinx=-1

From the unit circle for 0<=x<2pi

x=pi/6 and (5pi)/6 and x=(3pi)/2

May 25, 2017

The solutions are S={pi/6+2kpi,5/6pi+2kpi,3/2pi+2kpi}, k inZZ

Explanation:

We need

cos2x=1-2sin^2x

Therefore,

our equation becomes

cos2x=sinx

1-2sin^2x=sinx

2sin^2x+sinx-1=0

We solve this like a quadratic equation

The discriminant is

Delta=b^2-4ac=1-4*(2)*(-1)=1+8=9

As,

Delta>0, there are 2 real solutions

sinx=(-b+sqrtDelta)/(2a)=(-1+sqrt9)/(2*2)=2/(4)=1/2

x =pi/6+2kpi and x=5/6pi+2kpi, k inZZ

and

sinx=(-b-sqrtDelta)/(2a)=(-1-sqrt9)/(2*2)=-4/(4)=-1

x=3/2pi+2kpi, k inZZ