How do you find the derivative of # [e^x / (1 - e^x)]#?

1 Answer
May 25, 2017

#e^x/(1-e^x)^2#

Explanation:

Ahh... We gotta use the good ol' quotient rule. Using Lagrange's notation (one that I do not use often) as it would get messy in In Leibniz' notation, we see:

#(f/g)'=(f'g-fg')/(g^2)#

So (back to Leibniz)

Let #f(x)=e^x# and #g(x)=1-e^x#

#d/dx[e^x/(1-e^x)]=d/dx[f(x)/g(x)]=((df)/dx g(x)-(dg)/dxf(x))/(g^2(x))#

So, we've gotta figure out what the derivative of #f(x)# and #g(x)# is

#(df)/dx=d/dx[e^x]=e^x#

#(dg)/dx=d/dx[1]-d/dx[e^x]=-e^x#

Then sub back in

#((df)/dx g(x)-(dg)/dxf(x))/(g^2(x))=(e^x(1-e^x)+e^x(e^x))/(1-e^x)^2#

#=(e^x-e^(2x)+e^(2x))/(1-e^x)^2#

#=e^x/(1-e^x)^2#

And that's the most we can simplify for now. Therefore:

#d/dx[e^x/(1-e^x)]=e^x/(1-e^x)^2#