Question #431e3

1 Answer
May 26, 2017

e^(2x)y+3/2=(3e^(2x))/2e2xy+32=3e2x2

Explanation:

dy/(dx)+2y=3dydx+2y=3

Can be expressed as:
dy/dx+yf(x)=g(x)dydx+yf(x)=g(x)

Where f(x)=2f(x)=2 and g(x)=3g(x)=3.

Finding the Integrating Factor:
int f(x) dx=int 2 dx=2xf(x)dx=2dx=2x

Raise ee by this: e^(2x)e2x
Multiply the original expression by this factor:
dy/(dx)(e^(2x))+2e^(2x)y=3e^(2x)dydx(e2x)+2e2xy=3e2x

Observing the left hand side it is just the Product Rule applied.
Which means it can be rewritten as this:
(e^(2x)y)'=3e^(2x)

Integrate both sides
int(e^(2x)y)'=int3e^(2x)
e^(2x)y+C=(3e^(2x))/2

Find C given the condition f(0)=0.
e^(2(0))(0)+C=3/2(e^(2(0)))
C=3/2

Putting it all together:
e^(2x)y+3/2=(3e^(2x))/2