Question #431e3

1 Answer
May 26, 2017

#e^(2x)y+3/2=(3e^(2x))/2#

Explanation:

#dy/(dx)+2y=3#

Can be expressed as:
#dy/dx+yf(x)=g(x)#

Where #f(x)=2# and #g(x)=3#.

Finding the Integrating Factor:
#int f(x) dx=int 2 dx=2x#

Raise #e# by this: #e^(2x)#
Multiply the original expression by this factor:
#dy/(dx)(e^(2x))+2e^(2x)y=3e^(2x)#

Observing the left hand side it is just the Product Rule applied.
Which means it can be rewritten as this:
#(e^(2x)y)'=3e^(2x)#

Integrate both sides
#int(e^(2x)y)'=int3e^(2x)#
#e^(2x)y+C=(3e^(2x))/2#

Find #C# given the condition #f(0)=0#.
#e^(2(0))(0)+C=3/2(e^(2(0)))#
#C=3/2#

Putting it all together:
#e^(2x)y+3/2=(3e^(2x))/2#