Question #800f5

2 Answers
Jun 4, 2017

#\int(x^(1/2)-x^(-1/2))^2"d"x = \int(x-2+x^-1)"d"x#
#\int(x^(1/2)-x^(-1/2))^2"d"x = x^2/2-2x+ln\abs(x)+C#

Jun 4, 2017

#x^2/2-2x+lnx+C.#

Explanation:

Let, #I=int(sqrtx-1/sqrtx)^2dx.#

Knowing that, #(1) : inty^ndy=y^(n+1)/(n+1)+c, n!=-1, and,#

# (2) : int1/xdx=ln|x|+c', # we have,

#I=int(sqrtx-1/sqrtx)^2dx,#

#=int(x-2+1/x)dx,............[because," squaring]"#

#=intx^1dx-2intx^0dx+int1/xdx,#

#=x^(1+1)/2-2*x^(0+1)/(0+1)+ln|x|,#

# rArr I=x^2/2-2x+ln|x|+C.#

Enjoy Maths.!