Question #800f5

2 Answers
Jun 4, 2017

\int(x^(1/2)-x^(-1/2))^2"d"x = \int(x-2+x^-1)"d"x(x12x12)2dx=(x2+x1)dx
\int(x^(1/2)-x^(-1/2))^2"d"x = x^2/2-2x+ln\abs(x)+C(x12x12)2dx=x222x+ln|x|+C

Jun 4, 2017

x^2/2-2x+lnx+C.x222x+lnx+C.

Explanation:

Let, I=int(sqrtx-1/sqrtx)^2dx.I=(x1x)2dx.

Knowing that, (1) : inty^ndy=y^(n+1)/(n+1)+c, n!=-1, and,(1):yndy=yn+1n+1+c,n1,and,

(2) : int1/xdx=ln|x|+c', we have,

I=int(sqrtx-1/sqrtx)^2dx,

=int(x-2+1/x)dx,............[because," squaring]"

=intx^1dx-2intx^0dx+int1/xdx,

=x^(1+1)/2-2*x^(0+1)/(0+1)+ln|x|,

rArr I=x^2/2-2x+ln|x|+C.

Enjoy Maths.!