Before answering let us differentiate the inverse tan function.
arctan(x)=y
tan(arctan(x))=tan(y)
d/dx[x]=d/dx[tan(y)]
1=sec^2(y)*(dy)/(dx)
1/(sec^2(arctanx))=(dy) /(dx)
But sqrt(tan^2(alpha)+1)=sec^2(alpha)
Then in which alpha=arctan(x):
1/(sqrt(tan^2(arctan(x))+1))=(dy) /(dx)
1/(sqrt(x^2+1))=(dy)/(dx)
Now differentiating:
d/dx[arctan(x-(1+x^2)^(1/2))]
=[1/sqrt((x-(1+x^2)^(1/2))^2+1)]d/dx[x-(1+x^2)^(1/2)]
=[1/sqrt((x-(1+x^2)^(1/2))^2+1)][1-(1/2)(1+x^2)^(-1/2)d/dx[x^2+1]]
=[1/sqrt((x-(1+x^2)^(1/2))^2+1)][1-((1+x^2)^(-1/2))/2[2x]]
=[1/sqrt((x-(1+x^2)^(1/2))^2+1)][1-x(1+x^2)^(-1/2)]