How do you find \int _ { 0} ^ { 3} ( x ^ { 2} + x + 1) d x30(x2+x+1)dx?

2 Answers
Jun 10, 2017

16.516.5

Explanation:

Let's take apart the integral.

int (x^2+x+1) dx = intx^2 dx + int x dx + int 1 dx(x2+x+1)dx=x2dx+xdx+1dx
=x^3/3+x^2/2+x+C=x33+x22+x+C

Then, let's substitute the upper and lower bounds back in.

3^3/3+3^2/2+3-0333+322+30
=9+9/2+3=16.5=9+92+3=16.5

Jun 10, 2017

int_0^3 \ x^2+x+1 \ dx = 33/2

Explanation:

Integrating each term, we have:

int_0^3 \ x^2+x+1 \ dx = [x^3/3+x^2/2+x]_0^3
" " = (9+9/2+3) - (0)2
" " = 33/2