What is the solution of the Differential Equation #dy/dx=(x-3)y^2/x^3#?
2 Answers
# y = (2x^2)/(2x-3+Ax^2)#
Explanation:
We have:
#dy/dx=(x-3)y^2/x^3#
This is a first Order non-linear Separable Differential Equation, we can collect terms by rearranging the equation as follows
# 1/y^2 dy/dx=(x-3)/x^3 #
And now we can "separate the variables" to get
# int \ 1/y^2 \ dy= int \ (x-3)/x^3 \ dx #
# :. int \ 1/y^2 \ dy= int \ 1/x^2-3/x^3 \ dx #
And integrating gives us:
# y^(-1)/(-1) = x^(-1)/(-1)-3x^(-2)/(-2) + C_1#
# :. -1/y = -1/x+3/(2x^2) + C_1#
# :. -1/y = (3+2C_1x^2-2x)/(2x^2)#
# :. 1/y = (2x-3+Ax^2)/(2x^2)#
# y = (2x^2)/(2x-3+Ax^2)#
Explanation:
Use separation of variables, that is put the
Integrate both sides: