What is the solution of the Differential Equation dy/dx=(x-3)y^2/x^3?

2 Answers
Jun 12, 2017

y = (2x^2)/(2x-3+Ax^2)

Explanation:

We have:

dy/dx=(x-3)y^2/x^3

This is a first Order non-linear Separable Differential Equation, we can collect terms by rearranging the equation as follows

1/y^2 dy/dx=(x-3)/x^3

And now we can "separate the variables" to get

int \ 1/y^2 \ dy= int \ (x-3)/x^3 \ dx

:. int \ 1/y^2 \ dy= int \ 1/x^2-3/x^3 \ dx

And integrating gives us:

y^(-1)/(-1) = x^(-1)/(-1)-3x^(-2)/(-2) + C_1

:. -1/y = -1/x+3/(2x^2) + C_1

:. -1/y = (3+2C_1x^2-2x)/(2x^2)

:. 1/y = (2x-3+Ax^2)/(2x^2)

y = (2x^2)/(2x-3+Ax^2)

Jun 12, 2017

-1/y=-1/x+3/(2x^2)+C

Explanation:

Use separation of variables, that is put the y terms in the left, and x terms in the right.

dy/(dx)=(x-3)y^2/x^3

(1/y^2)dy/(dx)=(x-3)/x^3

(1/y^2)dy=(x-3)/x^3dx

Integrate both sides:

int (1/y^2)dy=int (x-3)/x^3dx

-1/y=int1/x^2-3/x^3dx

-1/y=-1/x-(-3/(2x^2))+C

-1/y=-1/x+3/(2x^2)+C