Question #3bdb8

1 Answer
Jun 17, 2017

#y=x^x*e^-x#

Explanation:

#e# is the inverse operation of #ln#, which means they undo or cancel each other out. For example, if you have #lnx#, you can take #e^lnx# and you are left with #x#:

I.e.

#cancel(e)^(cancel(ln)x)=x#

Also, there is a log law and an index law that will help:

#alnb=lnb^a#

#e^(a+b)=e^a*e^b#

First, use the log law to simplify:

#lny=xlnx-xrArrlny=lnx^x-x#

Next, take e^ of each side of the equation:

#rArrcancel(e)^(cancel(ln)y)=e^((ln(x^x)-x))#

Use the index law to separate the right hand side:

#y=e^ln(x^x)*e^-x#

#rArry=cancel(e)^(cancel(ln)(x^x))*e^-x#

#rArry=x^x*e^-x#