Question #a1599

1 Answer

The rule for differentiating partial functions y(x)=f(x)/g(x)

y'(x)=dy/dx=(df/dx*g(x)-f*dg/dx)/(g(x)^2)

Hence

dy/dx=(dsinx/dx*e^x-sinx*de^x/dx)/((e^x)^2)

dy/dx=(cosx*e^x-sinx*e^x)/(e^(2x))

dy/dx=[e^x*(cosx-sinx)]/(e^(2x))

dy/dx=(cosx-sinx)/e^x