Calculate the value of #p# in #log49^2=plog7# ?

3 Answers
Jun 23, 2017

#p = 4#

Explanation:

#log 49^2=p log 7 rArr log(7^2)^2=log 7^p# or

#log 7^4= log 7^p rArr p = 4#

Jun 23, 2017

#p=4#

Explanation:

#Log49^2 = pLog7#

Solution

Recall #-># #aLogb = Logb^a#

#:.# #Log49^2 = Log7^p#

#Log7^(2(2)) = Log7^p#

#Log7^4 = Log7^p#

#cancel(Log7)^4 = cancel(Log7)^p#

Hence #4=p#

#p=4# #-># #Answer#

Use the following log law:

#logx^y=ylogx#

and the following index law:

#(x^a)^b=x^(ab)#

Simplify as follows:

#log49^2=plog7#

#rArrlog(7^2)^2=plog7#

#rArrlog7^4=plog7#

#rArr4log7=plog7#

#rArrp=4cancel(log7)/cancel(log7)#

#rArrp=4#