How do you find the derivative of y=[(2-3x^2)^(1/2)](5x+2)?

1 Answer
Jun 30, 2017

(-15x^2-15x+4)/sqrt(2-3x^2)

Explanation:

The derivative of a product color(red)f(x)*color(green)g(x) is:

f'(x)*g(x)+f(x)*g'(x)

Let's assume that

color(red)(f(x)=(2-3x^2)^(1/2))

and

color(green)(g(x)=5x+2)

Since

f(x)=(f_1(x))^a->f'(x)=color(red)(a(f_1(x))^(a-1))*color(blue)(f_1'(x))

the derivative finally is:

color(red)(1/cancel2(2-3x^2)^(1/2-1)*color(blue)((-3*cancel2x)))*color(green)((5x+2))+color(red)((2-3x^2)^(1/2))*color(green)5

=-3*(2-3x^2)^(-1/2)* (5x+2)+5*(2-3x^2)^(1/2)

or

-(3(5x+2))/sqrt(2-3x^2)+5sqrt(2-3x^2)

=(-3(5x+2)+5(2-3x^2))/sqrt(2-3x^2)

=(-15x-6+10-15x^2)/sqrt(2-3x^2)

=(-15x^2-15x+4)/sqrt(2-3x^2)