The derivative of a product color(red)f(x)*color(green)g(x) is:
f'(x)*g(x)+f(x)*g'(x)
Let's assume that
color(red)(f(x)=(2-3x^2)^(1/2))
and
color(green)(g(x)=5x+2)
Since
f(x)=(f_1(x))^a->f'(x)=color(red)(a(f_1(x))^(a-1))*color(blue)(f_1'(x))
the derivative finally is:
color(red)(1/cancel2(2-3x^2)^(1/2-1)*color(blue)((-3*cancel2x)))*color(green)((5x+2))+color(red)((2-3x^2)^(1/2))*color(green)5
=-3*(2-3x^2)^(-1/2)* (5x+2)+5*(2-3x^2)^(1/2)
or
-(3(5x+2))/sqrt(2-3x^2)+5sqrt(2-3x^2)
=(-3(5x+2)+5(2-3x^2))/sqrt(2-3x^2)
=(-15x-6+10-15x^2)/sqrt(2-3x^2)
=(-15x^2-15x+4)/sqrt(2-3x^2)