cos 4x=8cos^4(x)-8cos^2x + 1 and cos 4x=8sin^4(x)-8sin^2x + 1,can u prove it?

1 Answer
Jul 8, 2017

LHS=cos4x

=2cos^2 (2x)-1

=2(cos (2x))^2-1

=2(2cos ^2x-1)^2-1

=2(4cos ^4x-4cos^2x+1)-1

=8cos ^4x-8cos^2x+2-1

=8cos ^4x-8cos^2x+1=RHS

Again

LHS=cos4x

=2cos^2 (2x)-1

=2(1-2sin^2x))^2-1

=2(1-4sin^2x+4sin^4x)-1

=2-8sin^2x+8sin^4x-1

=8sin^4x-8sin^2x+1=RHS

sin^2x+cos^2x=1

cos^2x = 1-sin^2x

substitute in the equation as follows

8cos^4x-8cos^2x+1 = 8cos^2x(cos^2x-1)+1

=8(1-sin^2x)(1-sin^2x-1)+1

=8(1-sin^2x)(-sin^2x)+1

=8sin^4x-8sin^2x+1