tan x = -9/40tanx=−940
csc^2x = 1+cot^2xcsc2x=1+cot2x
csc^2x = 1+(-40/9)^2csc2x=1+(−409)2
csc^2x = 1681/81csc2x=168181
csc x = \pm 41/9cscx=±419
Because it should be in 4th quadrant we have
csc x = -41/9cscx=−419
sinx = -9/41sinx=−941
2sin(x/2)cos(x/2) = -9/412sin(x2)cos(x2)=−941
sin(x/2)sqrt(1-sin^2(x/2)) = -9/82sin(x2)√1−sin2(x2)=−982
Squaring both sides we get
sin^2(x/2)(1-sin^2(x/2)) = (-9/82)^2sin2(x2)(1−sin2(x2))=(−982)2
Let t = sin^2(x/2)t=sin2(x2)
t(1-t)-(9/82)^2=0t(1−t)−(982)2=0
t^2-t+(9/82)^2=0t2−t+(982)2=0
t = (1\pm sqrt(1-4(9/82)^2))/2t=1±√1−4(982)22
t = (1\pm(40/41))/2t=1±(4041)2
t = 81/82,1/82t=8182,182
sin(x/2) = -9/sqrt(82),-1/sqrt(82)sin(x2)=−9√82,−1√82