Question #caf8c

1 Answer
Jul 10, 2017

Check

Explanation:

tan x = -9/40tanx=940
csc^2x = 1+cot^2xcsc2x=1+cot2x

csc^2x = 1+(-40/9)^2csc2x=1+(409)2

csc^2x = 1681/81csc2x=168181

csc x = \pm 41/9cscx=±419

Because it should be in 4th quadrant we have

csc x = -41/9cscx=419

sinx = -9/41sinx=941

2sin(x/2)cos(x/2) = -9/412sin(x2)cos(x2)=941

sin(x/2)sqrt(1-sin^2(x/2)) = -9/82sin(x2)1sin2(x2)=982

Squaring both sides we get

sin^2(x/2)(1-sin^2(x/2)) = (-9/82)^2sin2(x2)(1sin2(x2))=(982)2

Let t = sin^2(x/2)t=sin2(x2)

t(1-t)-(9/82)^2=0t(1t)(982)2=0

t^2-t+(9/82)^2=0t2t+(982)2=0

t = (1\pm sqrt(1-4(9/82)^2))/2t=1±14(982)22

t = (1\pm(40/41))/2t=1±(4041)2

t = 81/82,1/82t=8182,182

sin(x/2) = -9/sqrt(82),-1/sqrt(82)sin(x2)=982,182