How do you solve the system of equations #2x + 5y = - 1# and #3x + 2y = 4#?

2 Answers
Jul 11, 2017

#x=2#
#y=-1#

See below

Explanation:

#2x+5y=−1#multiply by 3
#3x+2y=4# multiply by 2 and subtract

#3*(2x+5y)=3*(−1)# equals #6x+15y=-3#
#2*(3x+2y)=2*4# . . . . . equals #6x+4y=8#
subtract: #11y=-11#
#y=-1#

now substitute back in
#3x+2(-1)=4#
#3x=6#
#x=2#

#x=2#
#y=-1#

Jul 11, 2017

#x=2#, #y=-1#

Explanation:

#color(white)(+)2x+5y=-1#
#color(white)(+)#
#color(white)(+)3x+2y=4#
................................................

Let's multiply the top equation by #1.5#

#color(white)(+)3x+7.5y=-1.5#
#color(black)(-)#
#color(white)(+)3x+2y=4#
................................................

#color(white)(0)5.5y=-5.5#

divide by #5.5# on both sides

#y=-1#

now we should solve for #x#

#2x+5y=-1#

#2x+5(-1)=-1#

#2x-5=-1#

#2x=4#

#x=2#

Just to check our work, let' solve the second equation, using #2# and #-1# for #x# and #y#

#3x+2y=4#

#3(2)+2(-1)# should equal #4#

#6-2#

#4=4#

We were right! #x=2#, #y=-1#