Question #e9697

3 Answers
Jul 20, 2017

#0#

Explanation:

#f(x) = 6sqrt4 + x = 12+x#

#f'(x) = 1#

#f''(x) = 0#

0

Explanation:

Some basics
1. Derivative of constant is zero
2. Derivartive of '#(x^n)#' is #nx^(n-1)#
So solving,
#d(6*4^(1/2)+x)/dx#
so,
=1
Now diffrentiation of 1 is zero

Jul 22, 2017

# y=6sqrt(4+x) .rArr (d^2y)/dx^2=(-3/2)(x+4)^(-3/2).#

Explanation:

Let, #y=6sqrt(4+x).#

# :. dy/dx=d/dx{6(x+4)^(1/2)},#

#=6d/dx{(x+4)^(1/2)}.#

Now, we know that, #d/dx{x^n}=nx^(n-1).#Hence,

#dy/dx=6*1/2(x+4)^(1/2-1)d/dx{(x+4)},......."[The Chain Rule],"#

# rArr dy/dx=3(x+4)^(-1/2).#

Hence, #(d^2y)/dx^2=d/dx{dy/dx},............"[Definition],"#

#=d/dx{3(x+4)^(-1/2)},#

#=3d/dx{(x+4)^(-1/2)},#

#=3{(-1/2)(x+4)^(-1/2-1)}d/dx(x+4),#

# rArr (d^2y)/dx^2=(-3/2)(x+4)^(-3/2).#