Question #297a6

1 Answer
Jul 22, 2017

int xsqrt(4x-x^2) "d"x = 2arcsin((x-2)/2) + 1/3 (x-3)(x+2) sqrt(4x-x^2) + Cx4xx2dx=2arcsin(x22)+13(x3)(x+2)4xx2+C.

Explanation:

Rewrite the integrand as follows.

int xsqrt(4x-x^2) "d"x = int xsqrt(4-(x-2)^2)"d"xx4xx2dx=x4(x2)2dx.

Denote the required integral int xsqrt(4x-x^2) "d"xx4xx2dx by II. Make the substitution u=x-2u=x2. Then II is transformed to,

I = int (u+2) sqrt(4-u^2) "d"uI=(u+2)4u2du.
I = int usqrt(4-u^2) "d"u + 2int sqrt(4-u^2) "d"uI=u4u2du+24u2du.

A good general integration result to be aware of is, for n != -1n1,

int p'(x) [p(x)]^(n) "d"x = ([p(x)]^(n+1))/(n+1)+C.

This can be easily verified by differentiating the LHS.

This can help us solve the first integral int usqrt(4-u^2) "d"u as picking 4-u^2=p(x) gives p'(x)=-2u. We conclude, int u(4-u^2)^(1/2) "d"u = -1/3 (4-u^2)^(3/2) + C. Then,

I = -1/3 (4-u^2)^(3/2) + 2intsqrt(4-u^2) "d"u.

Denote J=int sqrt(4-u^2) "d"u. Make the substitution u=2sin(theta). Then "d"u = 2cos(theta) "d"theta. J is transformed to,

J = 2int sqrt(4(1-sin^2(theta)))cos(theta) "d"theta.

The trigonometric identity cos^2(theta)+sin^2(theta)=1 gives sqrt(1-sin^2(theta))=cos^2(theta).

J = 4 int cos^2(theta) "d"theta.

The double angle identity cos(2theta) = 2cos^2(theta)-1 gives cos^2(theta)=1/2(1+cos(2theta)). Then,

J = 2 int 1+cos(2theta) "d"theta
J = 2theta + sin(2theta) + C
J = 2theta + 2sin(theta)cos(theta) + C
J = 2theta + 2sin(theta)sqrt(1-sin^2(theta))+C.

Then u=2sin(theta) gives theta = "arcsin"(u/2).

Then,

J = 2"arcsin"(u/2) + usqrt(1-u^2/4)+C
J = 2"arcsin"(u/2) + u/2sqrt(4-u^2)+C

We conclude,

I = 4arcsin(u/2) + usqrt(4-u^2) - 1/3(4-u^2)^(3/2) + C.
I = 4arcsin(u/2) + 1/3(u^2+3u-4)sqrt(4-u^2) + C.

Then u=x-2. u^2=x^2-4x+4. Gives u^2+3u-4=x^2-x-6.

Then,

I = 2arcsin((x-2)/2) + 1/3 (x^2-x-6) sqrt(4x-x^2) + C.