How do you solve \sin \frac { 2x + 1} { x } + \sin \frac { 2x + 1} { 3x } - 3\cos ^ { 2} \frac { 2x + 1} { 3x } = 0?

2 Answers
Jul 23, 2017

x=1/(3arcsin((-1+sqrt(10))/3)+6npi-2) or x=1/(3(2n+1)pi-3arcsin((-1+sqrt(10))/3)-2) where n in Z.

Explanation:

Let (2x+1)/(3x)=u.

Then,

sin(u)+sin(u)-3cos^2(u)=0.

Using the trigonometric identity sin^2(u)+cos^2(u)=1,

2sin(u)-3(1-sin^2(u))=0,
3sin^2(u)+2sin(u)-3=0.

This is a quadratic equation in sin(u) it has roots given by the quadratic formulae of

sin(u) = (-2pmsqrt(4+4*9))/(2*3),
sin(u) = (-1pmsqrt(10))/(3).

Then, the general solution to sin(u)=K is u=arcsin(K)+2npi or u = pi(1+2n) - arcsin(K) where n in Z.

Notice that sqrt(10)>3 so then -1-sqrt(10)<-4/3. So then the only solution set we need consider is sin(u) = (-1+sqrt(10))/(3), as abs(sin(x))<=1.

Then, the solution set for sin(u) is

u=arcsin((-1+sqrt(10))/3)+2npi or u=-arcsin((-1+sqrt(10))/3)+(2n+1)pi where n in Z.

If (2x+1)/(3x)=K then,

2x+1=3Kx,
x(2-3K)=-1,
x=1/(3K-2).

Then the solution set for x is

x=1/(3arcsin((-1+sqrt(10))/3)+6npi-2) or x=1/(3(2n+1)pi-3arcsin((-1+sqrt(10))/3)-2) where n in Z.

Jul 23, 2017

Let a=(2x+1)/(3x)

So the given equation becomes

sin3a+sina-3cos^2a=0

=>3sina-4sin^3a+sina-3cos^2a=0

=>4sina-4sin^3a-3cos^2a=0

=>4sina(1-sin^2a)-3cos^2a=0

=>4sinaxxcos^2a-3cos^2a=0

=>cos^2a(4sina-3)=0

When cos^2a=0

=>cosa=0

=>a=(2n+1)pi/2" where "n in ZZ

=>(2x+1)/(3x)=(2n+1)pi/2" where "n in ZZ

=>x((6n+3)pi/2-2)=1

=>x=1/((6n+3)pi/2-2)" where " n in ZZ

When sina=3/4=sinalpha,

where alpha=sin^-1(3/4)

=>a=npi+(-1)^nalpha" where " n in ZZ

=>(2x+1)/(3x)=npi+(-1)^nalpha" where " n in ZZ

=>x=1/(3(npi+(-1)^nalpha)-2)" where " n in ZZ