Let (2x+1)/(3x)=u.
Then,
sin(u)+sin(u)-3cos^2(u)=0.
Using the trigonometric identity sin^2(u)+cos^2(u)=1,
2sin(u)-3(1-sin^2(u))=0,
3sin^2(u)+2sin(u)-3=0.
This is a quadratic equation in sin(u) it has roots given by the quadratic formulae of
sin(u) = (-2pmsqrt(4+4*9))/(2*3),
sin(u) = (-1pmsqrt(10))/(3).
Then, the general solution to sin(u)=K is u=arcsin(K)+2npi or u = pi(1+2n) - arcsin(K) where n in Z.
Notice that sqrt(10)>3 so then -1-sqrt(10)<-4/3. So then the only solution set we need consider is sin(u) = (-1+sqrt(10))/(3), as abs(sin(x))<=1.
Then, the solution set for sin(u) is
u=arcsin((-1+sqrt(10))/3)+2npi or u=-arcsin((-1+sqrt(10))/3)+(2n+1)pi where n in Z.
If (2x+1)/(3x)=K then,
2x+1=3Kx,
x(2-3K)=-1,
x=1/(3K-2).
Then the solution set for x is
x=1/(3arcsin((-1+sqrt(10))/3)+6npi-2) or x=1/(3(2n+1)pi-3arcsin((-1+sqrt(10))/3)-2) where n in Z.