Question #3d361

3 Answers
Jul 26, 2017

See below

Explanation:

#(2^8*3^-5*6^0)^-2*(3^-2/2^3)^4*2^28#

Simplify the brackets first: (when you have an exponent to a power you multiply them. (For example: #" " (x^2)^3=x^6#)

#(2^8*3^-5*6^0)^-2=2^-16*3^10*6^0#

#(3^-2/2^3)^4=3^-8/2^12#

Remember anything to the #0 " power " = 1# so
#" "2^-16*3^10*6^0#
#=2^-16*3^10*1#
#=2^-16*3^10#

Now combine all of the factors: when bases are multiplied add the exponents (ex. #2^4*2^3=2^12" "#)

#2^-16*3^10*3^-8/2^12 *2^28#

#=(2^28*3^-2)/2^28#

# = 3^2# or #9#

Jul 26, 2017

See a solution process below:

Explanation:

First, simplify the #6# term using this rule of exponents:

#a^color(red)(0) = 1#

#(2^8 * 3^-5 * 6^color(red)(0))^-2 * (3^-2/2^3)^4 * 2^28 =>#

#(2^8 * 3^-5 * 1)^-2 * (3^-2/2^3)^4 * 2^28 =>#

#(2^8 * 3^-5)^-2 * (3^-2/2^3)^4 * 2^28#

Next, use this rule for exponents to simply the terms in both sets of parenthesis:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(2^color(red)(8) * 3^color(red)(-5))^color(blue)(-2) * (3^color(red)(-2)/2^color(red)(3))^color(blue)(4) * 2^28 =>#

#(2^(color(red)(8) * color(blue)(-2)) * 3^(color(red)(-5) * color(blue)(-2))) * (3^(color(red)(-2) * color(blue)(4))/2^(color(red)(3) * color(blue)(4))) * 2^28 =>#

#(2^-16 * 3^10) * (3^-8/2^12) * 2^28#

Then, rewrite the expression as:

#((2^-16 * 2^28)/2^12) * (3^10 * 3^-8)#

Now, use this rule of exponents to multiply the numerator in the #2#s term and to multiply the #3#s term:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#((2^color(red)(-16) * 2^color(blue)(28))/2^12) * (3^color(red)(10) * 3^color(blue)(-8)) =>#

#(2^(color(red)(-16)+color(blue)(28))/2^12) * (3^(color(red)(10)+color(blue)(-8))) =>#

#(2^12/2^12) * (3^2) =>#

#1 * 9 =>#

#9#

Jul 26, 2017

#3^2=9#

Explanation:

#(2^8*3^-5*6^0)^-2*(3^-2/2^3)^4*2^28#

While this looks extremely complicated, it is manageable if it is done one step at a time, applying the laws of indices. (exponents).

"When raising a power to a power, multiply the indices."
Use this law to remove the brackets.

#color(blue)((2^8*3^-5*6^0)^-2)xxcolor(red)((3^-2/2^3)^4)xxcolor(green)(2^28)#

#color(blue)(2^-16*3^10*6^0)xxcolor(red)(3^-8/2^12)xxcolor(green)(2^28)#
#color(white)(xxxxxxx)uarr#
"Anything to the power of #0# is equal to 1"#" "rarrcolor(blue)(6^0 =1)#

Get rid of the negative indices: #x^-m=1/x^m#

#(color(blue)(3^10)xxcolor(green)(2^28))/(color(blue)(2^16) xxcolor(red)(3^8xx2^12))#

"If you are multiplying and the bases are the same, ADD the indices:

#=(3^10 xx 2^28)/(3^8 xx2^28)#

#=(3^10 xx cancel(2^28))/(3^8 xxcancel(2^28))#

"If you are dividing and the bases are the same, SUBTRACT the indices:

#=3^2#

#=9#