How do you write the equation -2x^2-36x-2y^2-112=0 in standard form and find the center and radius?

1 Answer
Jul 27, 2017

x^2+y^2+18x+56=0
C=(-9;0)
r=5

Explanation:

First, let's divide all terms of the equation by -2 and get:

x^2+18x+y^2+56=0

Then let's write in standard form x^2+y^2+ax+by+c=0:

x^2+y^2+18x+56=0

where

a=18
b=0
c=56

Now we can get the center and radius by applying the following formulas:

C=(-a/2;-b/2)

r=1/2sqrt(a^2+b^2-4c)

Then we will get:

C=(-cancel18^9/cancel2;0)=(-9;0)

r=1/2sqrt(18^2+0-4*56)=1/2sqrt100=1/2*10=5

graph{x^2+y^2+18x+56=0 [-18, 3, -6, 6]}