How do you solve #\frac { x - 8} { x - 4} > 0#?
2 Answers
Here manuplate th numerator to relate with denominator,
now seprating numerator
thus,
hence
to satisfy the above question
Explanation:
#"the zeros of the numerator/denominator are"#
#"numerator "x=8," denominator "x=4#
#"these indicate where the rational function may change"#
#"sign"#
#"the intervals on the domain are"#
#x<4,color(white)(x)4 < x <8,color(white)(x)x>8#
#"consider a "color(blue)"test point " "in each interval"#
#"we want to find where the function is positive " >0#
#"substitute each test point into the function and consider"#
#"its sign"#
#color(magenta)"x = 3"to(-)/(-)tocolor(red)" positive"#
#color(magenta)"x=5"to(-)/(+)tocolor(blue)" negative"#
#color(magenta)"x = 10"to(+)/(+)tocolor(red)" positive"#
#rArr(-oo,4)uu(8,+oo)" is the solution"#
graph{(x-8)/(x-4) [-10, 10, -5, 5]}