Question #ab74b

1 Answer
Jul 31, 2017

θ=π2,2π3,4π3

Explanation:

2sinθcosθ+sinθ2cosθ1=0

2sinθcosθ2cosθ+sinθ1=0 rearrange the terms

2cosθ(sinθ1)+1(sinθ1)=0 factor

(sinθ1)(2cosθ+1)=0 factor out sinθ1

There are two possibilities:

sinθ1=0

sinθ=1
θ=π2

2cosθ+1=0

2cosθ=1
cosθ=12
θ=2π3,4π3

So, θ=π2,2π3,4π3.