How do you simplify #1,000,000,000\times 6,000,000,000#?

3 Answers
Aug 1, 2017

See a solution process below:

Explanation:

We can rewrite this as:

#(1 xx 1,000,000,000) xx (6 xx 1,000,000,000) =>#

#(1 xx 6) xx (1,000,000,000 xx 1,000,000,000) =>#

#6 xx (1,000,000,000 xx 1,000,000,000)#

To multiply the numbers on the right we combine the number of #0#s #xx 1# giving:

#6 xx (1,color(red)(000,000,000) xx 1,color(blue)(000,000,000))#

#6 xx (1,color(red)(000,000,000),color(blue)(000,000,000)) =>#

#6,000,000,000,000,000,000#

Aug 1, 2017

Alternatively, using scientific notation makes things easier (even though it's technically the same method).

The answer is #" "6 xx 10^18 " " or " " 6,000,000,000,000,000,000#

Explanation:

#1,underbrace(000,000,000)_(color(red)"9 ""zeros") = 1 xx 10^color(red)9#

#6,underbrace(000,000,000)_(color(red)"9 ""zeros") = 6 xx 10^color(red)9#

Therefore:

#1 xx 10^color(red)9 xx 6 xx 10^color(red)9#

#= (1 xx 6) xx (10^color(red)9 xx 10^color(red)9)#

#= 6 xx 10^(color(red)9 + color(red)9)#

#= 6 xx 10^color(blue)18#

#= 6,underbrace(000,000,000,000,000,000)_(color(blue)"18 ""zeros")#

Final Answer

Aug 3, 2017

6,000,000,000,000,000,000

Explanation:

#6 * 1=6#

now add the Zeroes after 6
#(00000....)9 zeroes + (00000...) 9 zeroes = 9+9=18#

Write #6# and add #18 Zeroes# after it.
#6,000,000,000,000,000,000#