What is the derivative of this function y=(cos^-1(4x^2))^2?

1 Answer
Aug 4, 2017

("d")/("d"x) ("arccos"(4x^2)) = -(16x*"arccos"(4x^2))/(sqrt(1-16x^4)).

Explanation:

Note that "d"/("d"x) ("arccos"(x))=-1/sqrt(1-x^2).

Then, by the chain rule
("d")/("d"x) ("arccos"(4x^2)) = 2*("arccos"(4x^2))*"d"/("d"x) ("arccos"(4x^2)).

Then, by the chain rule again,
"d"/("d"x) ("arccos"(4x^2))=-1/sqrt(1-16x^4) * "d"/("d"x) (4x^2),
"d"/("d"x) ("arccos"(4x^2))=-(8x)/sqrt(1-16x^4).

Substituting,

("d")/("d"x) ("arccos"(4x^2)) = -(16x*"arccos"(4x^2))/(sqrt(1-16x^4)).