How do you solve the system of equations #3x-2y=-1# and #6y + 3 = 7x#?

2 Answers
Aug 10, 2017

#x=-3#

#y=-4#

Explanation:

#3x-2y=-1#

Let this be equation number #1#

#3x-2y=-1->1#

#6y+3=7x#

#3=7x-6y#

#7x-6y=3#

Let this be equation number #2#

#7x-6y=3->2#

Multiply Equation number #1# with #3#
That is, #=>(3x-2y)*3=-1*3#

#=>3x*3-2y*3=-3#

#=>9x-6y=-3#

Let this be equation number #3#

#9x-6y=-3->3

Now subtract equation number #2# with equation number #3#
That is,

#(7x-6y=3)-(9x-6y=-3),#we have to subtract the right-hand side and left-hand side separately
So it becomes,

#7x-6y-(9x-6y)=3-(-3)#

#7x-6y-9x+6y=3+3#

#7x-9x-6y+6y=6#

#7x-9x=6#

#-2x=6#

#x=6/-2#

#x=-6/2#

#x=-3#

Put the value of #x# in equation number #1# #(#you can take any of the given equation#)#
Then equation number #1# becomes

#3*(-3)-2y=-1#

#=>-9-2y=-1#

#=>-2y=-1+9#

#=>-2y=8#

#y=8/-2#

#y=-8/2#

#y=-4#

#x=-3# #&# #y=-4#

Aug 10, 2017

The solution is #((x),(y))=((-3),(-4))#

Explanation:

We perform the Gauss Jordan elimination with the augmented matrix

#M=((3,-2,:,-1),(7,-6,:,3))#

We perform the row operations

#R2larrR2-7/3R1#, #=>#, #((3,-2,:,-1),(0,-4/3,:,16/3))#

#R2larr(R2)/(-3/4)#, #=>#, #((3,-2,:,-1),(0,1,:,-4))#

#R1larrR1+2R2#, #=>#, #((3,0,:,-9),(0,1,:,-4))#

#R1larr(R1)/3#, #=>#, #((1,0,:,-3),(0,1,:,-4))#