How do you solve the system of equations 3x-2y=-13x2y=1 and 6y + 3 = 7x6y+3=7x?

2 Answers
Aug 10, 2017

x=-3x=3

y=-4y=4

Explanation:

3x-2y=-13x2y=1

Let this be equation number 11

3x-2y=-1->13x2y=11

6y+3=7x6y+3=7x

3=7x-6y3=7x6y

7x-6y=37x6y=3

Let this be equation number 22

7x-6y=3->27x6y=32

Multiply Equation number 11 with 33
That is, =>(3x-2y)*3=-1*3(3x2y)3=13

=>3x*3-2y*3=-33x32y3=3

=>9x-6y=-39x6y=3

Let this be equation number 33

#9x-6y=-3->3

Now subtract equation number 22 with equation number 33
That is,

(7x-6y=3)-(9x-6y=-3),(7x6y=3)(9x6y=3),we have to subtract the right-hand side and left-hand side separately
So it becomes,

7x-6y-(9x-6y)=3-(-3)7x6y(9x6y)=3(3)

7x-6y-9x+6y=3+37x6y9x+6y=3+3

7x-9x-6y+6y=67x9x6y+6y=6

7x-9x=67x9x=6

-2x=62x=6

x=6/-2x=62

x=-6/2x=62

x=-3x=3

Put the value of xx in equation number 11 ((you can take any of the given equation))
Then equation number 11 becomes

3*(-3)-2y=-13(3)2y=1

=>-9-2y=-192y=1

=>-2y=-1+92y=1+9

=>-2y=82y=8

y=8/-2y=82

y=-8/2y=82

y=-4y=4

x=-3x=3 && y=-4y=4

Aug 10, 2017

The solution is ((x),(y))=((-3),(-4))

Explanation:

We perform the Gauss Jordan elimination with the augmented matrix

M=((3,-2,:,-1),(7,-6,:,3))

We perform the row operations

R2larrR2-7/3R1, =>, ((3,-2,:,-1),(0,-4/3,:,16/3))

R2larr(R2)/(-3/4), =>, ((3,-2,:,-1),(0,1,:,-4))

R1larrR1+2R2, =>, ((3,0,:,-9),(0,1,:,-4))

R1larr(R1)/3, =>, ((1,0,:,-3),(0,1,:,-4))