What are the first and second derivatives of f(x)=1/(x^2+6)f(x)=1x2+6?

1 Answer
Aug 10, 2017

f(x)=1/(x^2+6) => " " f''(x)=(6(x^2-2))/((x^2+6)^3

Explanation:

Since 1/x=x^(-1), we can say

f(x)=1/(x^2+6)=(x^2+6)^(-1)

Then, by the chain rule (f(g(x))'=f'(g(x))g'(x)

=> f'(x)=-2x(x^2+6)^(-2)=(-2x)/((x^2+6)^2)

To get the 2nd derivative, we simply take the derivative of the derivative

Another way to write f'(x)

f'(x)=-2x(x^2+6)^-2

Then, by the Product Rule (f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

=> f''(x)=-2(x^2+6)^-2+8x^2(x^2+6)^(-3)

=(-2(x^2+6))/((x^2+6)^3)+(8x^2)/(x^2+6)^3

=(8x^2-2x^2-12)/((x^2+6)^3)=(6x^2-12)/((x^2+6)^3)=(6(x^2-2))/((x^2+6)^3)