(x−4y−2⋅x2y−4)2
⇒(x−4y−2⋅x2y−4)2
an⋅am=an+m,multiplying as per this equation within the brackets.
⇒(x−4⋅x2⋅y−2⋅y−4)2
⇒(x−4+2⋅y−2+−4)2
⇒(x−2⋅y−2−4)2
⇒(x−2⋅y−6)2
(xn)m=xn⋅m,so (xn⋅yp)m=xn⋅m⋅yp⋅m, from this we can simply the equation as:
⇒x−2⋅2⋅y−6⋅2
⇒x−4⋅y−12