Question #852f1

2 Answers
Aug 12, 2017

#13# #&# #14#

Explanation:

Let the two consecutive positive integers be #x# #&# #x+1.#

#x^2+(x+1)^2=365#

We know that #(a+b)^2=a^2+2ab+b^2.#So the equation becomes

#=>x^2+(x^2+2*x*1+1^2)=365#

#=>x^2+x^2+2*x*1+1^2=365#

#=>x^2+x^2+2x+1=365#

#=>2x^2+2x+1=365#

#=>2x^2+2x+1color(red)(-365)=365color(red)(-365)#

#=>2x^2+2x-364=0#

Apply Quadratic Formula, that is #x=(-b+-sqrt(b^2-4ac))/(2a).# Here

#a=2, b=2, c=-364#

#=>x=(-2+-sqrt(2^2-(4*2*(-364))))/(2*2)#

#=>x=(-2+-sqrt(4-(8*(-364))))/(4)#

#=>x=(-2+-sqrt(4-(-2912)))/4#

#=>x=(-2+-sqrt(4+2912))/4#

#=>x=(-2+-sqrt(2916))/4#

#=>x=(-2+54)/4# #or# #x=(-2-54)/4#

#=>x=52/4# #or# #x=(-56)/4#

#=>x=13# #or# #x=-14#

#x# won't be negative because the value must be a positive integer.

So, #x=13#

Then #x+1=14#

So the positive consecutive integers whose sum of squares is 365 are #13# #&# #14.#

#=>13^2+14^2=365#

#=>169+196=365#

#=>365=365#

Aug 12, 2017

The positive integers are #13 and 14#

Explanation:

Let the two integers be #x and (x+1)#

The sum of their squares must be #365#

#x^2 + (x+1)^2 = 365#

#x^2 +x^2 +2x+1 =365" "larr# make the quadratic equal to #0#

#2x^2 +2x-364=0" "larr div 2#

#x^2 +x-182 =0#

As we are looking for two integers, the expression will factorise.

Factors which differ by #1# are on either side of the square root.

#sqrt182 =13.49#

The likely factors are #13 and 14, # check: #" "13 xx 14 = 182#

#(x-13)(x+14)=0#

Solving gives #x = 13 or x= -14# (which we reject as negative.)

#x =13 and x+1 = 14#