Question #f23eb

1 Answer
Aug 15, 2017

Solution

Explanation:

From equation 1
3x-2y=13x2y=1
2y = 3x-12y=3x1

Equation 2 =>
(x-2)^2+(2y+3)^2=26(x2)2+(2y+3)2=26
x^2-4x+4+(3x+2)^2=26x24x+4+(3x+2)2=26
x^2-4x+4+9x^2+12x+4=26x24x+4+9x2+12x+4=26
10x^2+8x-18 = 010x2+8x18=0
5x^2+4x-9 = 05x2+4x9=0
5x^2-5x+9x-9 = 05x25x+9x9=0
5x(x-1)+9(x-1) = 05x(x1)+9(x1)=0
(x-1)(5x+9) = 0(x1)(5x+9)=0
x = 1,-9/5x=1,95
y = 1,-16/5y=1,165
Hence the solution is (1,1)(1,1),(-9/5,-16/5)(95,165)

You can verify the result by substituting in the equations. For e.g.

Let us take the second set of solution and put them on equation 2
(x-2)^2+(2y+3)^2=(-9/5-2)^2+(2*(-16/5)+3)^2(x2)2+(2y+3)2=(952)2+(2(165)+3)2
= ((-9-10)^2+(-32+15)^2)/5^2=(910)2+(32+15)252
=((-19^2)+(-17)^2)/25=(192)+(17)225
= (361+289)/25=361+28925
=650/25=65025
=26=R.H.S=26=R.H.S