Solve this?

enter image source here

1 Answer
Aug 22, 2017

(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)=(1-sin^2thetacos^2theta)/((2+sin^2thetacos^2theta)1sin2θcos2θ2+sin2θcos2θ=1sin2θcos2θ(2+sin2θcos2θ)

Explanation:

Since

sectheta=1/costhetasecθ=1cosθ

and

csctheta=1/sinthetacscθ=1sinθ

the left side of the equation is:

[1/(1/cos^2theta-cos^2theta)+1/(1/sin^2theta-sin^2theta)]sin^2thetacos^2theta11cos2θcos2θ+11sin2θsin2θsin2θcos2θ

Let's simplify the fractions and get:

[cos^2theta/(1-cos^4theta)+sin^2theta/(1-sin^4theta)]sin^2thetacos^2theta[cos2θ1cos4θ+sin2θ1sin4θ]sin2θcos2θ

that's, by summing the fractions:

[(cos^2theta(1-sin^4theta)+sin^2theta(1-cos^4theta))/((1-cos^4theta)(1-sin^4theta))]sin^2thetacos^2theta[cos2θ(1sin4θ)+sin2θ(1cos4θ)(1cos4θ)(1sin4θ)]sin2θcos2θ

Let's expand the numerator and factorize the denominator: since

color(red)(a^2-b^2=(a-b)(a+b))a2b2=(ab)(a+b)

we get:

[(cos^2theta-cos^2thetasin^4theta+sin^2theta-sin^2thetacos^4theta))/color(red)((1-cos^2theta)(1+cos^2theta)(1-sin^2theta)(1+sin^2theta)]sin^2thetacos^2theta(cos2θcos2θsin4θ+sin2θsin2θcos4θ)(1cos2θ)(1+cos2θ)(1sin2θ)(1+sin2θ)sin2θcos2θ

Since

color(blue)(sin^2theta+cos^2theta=1)sin2θ+cos2θ=1

and

1-cos^2theta=sin^2theta1cos2θ=sin2θ

and

1-sin^2theta=cos^2theta1sin2θ=cos2θ

we get:

[(1-cos^2thetasin^4theta-sin^2thetacos^4theta))/(cancel(sin^2theta)(1+cos^2theta)cancel(cos^2theta)(1+sin^2theta)]cancel(sin^2theta)cancel(cos^2theta)

Let's factorize at the numerator and expand the denominator:

(1-sin^2thetacos^2theta(color(blue)(sin^2theta+cos^2theta)))/((1+color(blue)(sin^2theta+cos^2theta)+sin^2thetacos^2theta)

that's

(1-sin^2thetacos^2theta)/((1+1+sin^2thetacos^2theta)

or the right side of the given equation