Since
sectheta=1/costhetasecθ=1cosθ
and
csctheta=1/sinthetacscθ=1sinθ
the left side of the equation is:
[1/(1/cos^2theta-cos^2theta)+1/(1/sin^2theta-sin^2theta)]sin^2thetacos^2theta⎡⎣11cos2θ−cos2θ+11sin2θ−sin2θ⎤⎦sin2θcos2θ
Let's simplify the fractions and get:
[cos^2theta/(1-cos^4theta)+sin^2theta/(1-sin^4theta)]sin^2thetacos^2theta[cos2θ1−cos4θ+sin2θ1−sin4θ]sin2θcos2θ
that's, by summing the fractions:
[(cos^2theta(1-sin^4theta)+sin^2theta(1-cos^4theta))/((1-cos^4theta)(1-sin^4theta))]sin^2thetacos^2theta[cos2θ(1−sin4θ)+sin2θ(1−cos4θ)(1−cos4θ)(1−sin4θ)]sin2θcos2θ
Let's expand the numerator and factorize the denominator: since
color(red)(a^2-b^2=(a-b)(a+b))a2−b2=(a−b)(a+b)
we get:
[(cos^2theta-cos^2thetasin^4theta+sin^2theta-sin^2thetacos^4theta))/color(red)((1-cos^2theta)(1+cos^2theta)(1-sin^2theta)(1+sin^2theta)]sin^2thetacos^2theta(cos2θ−cos2θsin4θ+sin2θ−sin2θcos4θ)(1−cos2θ)(1+cos2θ)(1−sin2θ)(1+sin2θ)sin2θcos2θ
Since
color(blue)(sin^2theta+cos^2theta=1)sin2θ+cos2θ=1
and
1-cos^2theta=sin^2theta1−cos2θ=sin2θ
and
1-sin^2theta=cos^2theta1−sin2θ=cos2θ
we get:
[(1-cos^2thetasin^4theta-sin^2thetacos^4theta))/(cancel(sin^2theta)(1+cos^2theta)cancel(cos^2theta)(1+sin^2theta)]cancel(sin^2theta)cancel(cos^2theta)
Let's factorize at the numerator and expand the denominator:
(1-sin^2thetacos^2theta(color(blue)(sin^2theta+cos^2theta)))/((1+color(blue)(sin^2theta+cos^2theta)+sin^2thetacos^2theta)
that's
(1-sin^2thetacos^2theta)/((1+1+sin^2thetacos^2theta)
or the right side of the given equation