Question #78619

2 Answers
Aug 24, 2017

#(x-7)^3= x^3 - 21x^2 + 147x -343#

Explanation:

For low powers you can make use of Pascal's Triangle but I'll do it more generally here with the binomial theorem:

#(x+y)^n = sum_(k=0)^n ((n),(k))x^(n-k) y^k#

where #((n),(k)) = (n!)/((n-k)!k!#

Hence, we have

#(x-7)^3 = sum_(k=0)^3 ((3),(k)) x^(3-k) y^k#

#=((3),(0))x^3 + ((3),(1))x^2 (-7) + ((3),(2))x (-7)^2 + ((3),(3)) (-7)^3#

we evaluate this, noting that #0! = 1#

#= x^3 - 21x^2 + 147x -343#

Aug 24, 2017

#x^3-21x^2+147x-343#

Explanation:

#"to expand "(x+a)^3" in general"#

#x^3+(a+a+a)x^2+(a^2+a^2+a^2)x+a^3#

#"here "a=-7#

#rArr(x-7)^3#

#=x^3+(-7-7-7)x^2+(49+49+49)x+(-7)^3#

#=x^3-21x^2+147x-343#