Question #c34f3

1 Answer
Aug 31, 2017

i) interpret #1 + sqrt(2)i# as coordinates #(1,sqrt(2))# and convert to polar coordinates.
First calculate radius #r = sqrt(1^2 + sqrt(2)^2# = #sqrt(3)#

Angle #theta = sin^-1(sqrt(2)/sqrt(3)) = 54.74# degrees (rounding)

...so the polar representation #(r,theta) = (sqrt(3), 54.74)#

ii) interpret #1 - sqrt(2)i# as coordinates #(1, sqrt(2))# and convert to polar coordinates.

radius #r = sqrt(1^2 + (-sqrt(2)^2)# = #sqrt(3)#

Angle #theta = sin^-1(-sqrt(2)/sqrt(3)) = -54.74# degrees (rounding)
...so polar form is #(sqrt(3), -54.74)#

iii) when multiplying the polar form of complex numbers, you multiply the magnitude and add the angles.

So, you have #(sqrt(3)^2 , (54.74 - 54.74))# = (3,0)

iv) I think is incomplete. No idea on this one.