Question #68e59
2 Answers
Explanation:
A rule of exponents is that variables with an operation within the bracket are raised to the exponent. E.g.
So here, you apply the same rule:
You can't factorise the expression because of the +
Hope this helps!
Explanation:
(a+b)^3+a^3" is a "color(blue)"sum of cubes"(a+b)3+a3 is a sum of cubes
•color(white)(x)x^3+y^3=(x+y)(x^2-xy+y^2)larrcolor(blue)" factors"∙xx3+y3=(x+y)(x2−xy+y2)← factors
"here "x=a+b" and "y=ahere x=a+b and y=a
rArr(a+b)^3+a^3⇒(a+b)3+a3
=(a+b+a)((a+b)^2-a(a+b)+a^2)=(a+b+a)((a+b)2−a(a+b)+a2)
=(2a+b)(a^2+2ab+b^2cancel(-a^2)-abcancel(+a^2))
=(2a+b)(a^2+b^2+ab)
color(blue)"Similarly for denominator"
"here "x=a+b" and " y=b
rArr(a+b)^3+b^3
=(a+b+b)((a+b)^2-b(a+b)+b^2)
=(2b+a)(a^2+2ab+b^2-abcancel(-b^2)cancel(+b^2))
=(2b+a)(a^2+b^2+ab)
"Putting it together we obtain"
((2a+b)cancel((a^2+b^2+ab)))/((2b+a)cancel((a^2+b^2+ab)))
=(2a+b)/(2b+a)