Question #68e59

2 Answers
Sep 12, 2017

(2a^3 + b^3) / (a^3+2b^3)2a3+b3a3+2b3

Explanation:

((a+b)^3 + a^3) / ((a+b)^3 + b^3)(a+b)3+a3(a+b)3+b3

A rule of exponents is that variables with an operation within the bracket are raised to the exponent. E.g.
(p+q)^2(p+q)2
=p^2 + q^2=p2+q2

So here, you apply the same rule:
=(a^3 + b^3 + a^3) / (a^3 + b^3 + b^3)=a3+b3+a3a3+b3+b3
=(2a^3 + b^3) / (a^3 + 2b^3)=2a3+b3a3+2b3

You can't factorise the expression because of the +

Hope this helps!

Sep 12, 2017

(2a+b)/(2b+a)2a+b2b+a

Explanation:

(a+b)^3+a^3" is a "color(blue)"sum of cubes"(a+b)3+a3 is a sum of cubes

•color(white)(x)x^3+y^3=(x+y)(x^2-xy+y^2)larrcolor(blue)" factors"xx3+y3=(x+y)(x2xy+y2) factors

"here "x=a+b" and "y=ahere x=a+b and y=a

rArr(a+b)^3+a^3(a+b)3+a3

=(a+b+a)((a+b)^2-a(a+b)+a^2)=(a+b+a)((a+b)2a(a+b)+a2)

=(2a+b)(a^2+2ab+b^2cancel(-a^2)-abcancel(+a^2))

=(2a+b)(a^2+b^2+ab)

color(blue)"Similarly for denominator"

"here "x=a+b" and " y=b

rArr(a+b)^3+b^3

=(a+b+b)((a+b)^2-b(a+b)+b^2)

=(2b+a)(a^2+2ab+b^2-abcancel(-b^2)cancel(+b^2))

=(2b+a)(a^2+b^2+ab)

"Putting it together we obtain"

((2a+b)cancel((a^2+b^2+ab)))/((2b+a)cancel((a^2+b^2+ab)))

=(2a+b)/(2b+a)