Question #68e59
2 Answers
Explanation:
A rule of exponents is that variables with an operation within the bracket are raised to the exponent. E.g.
So here, you apply the same rule:
You can't factorise the expression because of the +
Hope this helps!
Explanation:
#(a+b)^3+a^3" is a "color(blue)"sum of cubes"#
#•color(white)(x)x^3+y^3=(x+y)(x^2-xy+y^2)larrcolor(blue)" factors"#
#"here "x=a+b" and "y=a#
#rArr(a+b)^3+a^3#
#=(a+b+a)((a+b)^2-a(a+b)+a^2)#
#=(2a+b)(a^2+2ab+b^2cancel(-a^2)-abcancel(+a^2))#
#=(2a+b)(a^2+b^2+ab)#
#color(blue)"Similarly for denominator"#
#"here "x=a+b" and " y=b#
#rArr(a+b)^3+b^3#
#=(a+b+b)((a+b)^2-b(a+b)+b^2)#
#=(2b+a)(a^2+2ab+b^2-abcancel(-b^2)cancel(+b^2))#
#=(2b+a)(a^2+b^2+ab)#
#"Putting it together we obtain"#
#((2a+b)cancel((a^2+b^2+ab)))/((2b+a)cancel((a^2+b^2+ab)))#
#=(2a+b)/(2b+a)#