Question #c28d1

2 Answers
Sep 13, 2017

Assuming that I reformatted the question correctly
#(a+(a/(1+a/(a+1))))=color(red)((3a+1)/(2a+1)a#

Explanation:

#(a+(a/(1+a/(a+1))))#

#color(white)("XXX")=(a+(a/((a+1+a)/a)))#

#color(white)("XXX")=(a+a/((2a+1)/a))#

#color(white)("XXX")=(a+a * a/(2a+1))#

#color(white)("XXX")=(a+(a^2)/(2a+1))#

#color(white)("XXX")=(a(2a+1)+a^2)/(2a+1)#

#color(white)("XXX")=(2a^2+a+a^2)/(2a+1)#

#color(white)("XXX")=(3a^2+a)/(2a+1)#

#color(white)("XXX")=(3a+1)/(2a+1) * a#

Sep 13, 2017

#(a+(a/(1+a/(a+1))))=(a(3a+2))/(2a+1)#

Explanation:

#(a+(a/(1+a/(a+1))))#

Let's start with just the fraction.

Multiply the fraction by #color(blue)((a+1)/(a+1))#

#a/(1+a/(a+1))*color(blue)(a+1)/color(blue)(a+1)=(a(a+1))/((a+1)(1+a/(a+1)))=(a(a+1))/((a+1)+a(a+1)/(a+1)))=(a^2+a)/((a+1)+a)=color(red)((a^2+a)/(2a+1))#

Now multiply the first term by #color(blue)((2a+1)/(2a+1))# to get a common denominator

#(a+color(red)((a^2+a)/(2a+1)))=(a*(color(blue)(2a+1)/color(blue)(2a+1))+color(red)((a^2+a)/(2a+1)))=(2a^2+a)/(2a+1)+color(red)((a^2+a)/(2a+1))=(2a^2+a+a^2+a)/(2a+1)=(3a^2+2a)/(2a+1)=(a(3a+2))/(2a+1)#