How do you evaluate #(\frac { x ^ { - 1/ 4} x ^ { 1/ 6} } { x ^ { 1/ 4} x ^ { - 1/ 2} } ) ^ { - 1/ 3}#?

1 Answer
Sep 15, 2017

#x^(-1/18) = root(18)x#

Explanation:

Remember that #x^a * x^b = x^(a + b)#

...you can apply this to the numerator and denominator, giving:

#((x^(1/6-1/4))/(x^(1/4 - 1/2)))^(-1/3)#

#=(x^(-1/12)/(x^(-1/4)))^(-1/3)#

Next, remember that #1/x^a = x^(-a)#

...and furthermore, #1/x^(-a) = 1/(1/x^(a)) = x^a#

So with this in mind, you can flip your numerator/denominator upside down, and write:

#= (x^(1/4)/x^(1/12))^(-1/3)#

...and, since #x^a/x^b = x^(a-b)#, you can rewrite this as:

#(x^(1/4 - 1/12))^(-1/3)#

#= (x^(1/6))^(-1/3)#

...and furthermore, remember that #(x^a)^b = x^(a * b)#

So you can rewrite it as:

# = x^(1/6 * -1/3) = x^(-1/18)#

...alternately, this could be written as #1/root(18)x#

...GOOD LUCK!