What is the correct way to solve this? Explain in steps. Thank you.

enter image source here

1 Answer
Sep 23, 2017

Use chain rule

Explanation:

f(x) = u/v
f'(x) = (vdu-udv)/v^2

Use this relationship to compute the derivative

u = (1+sqrt(3x)) and v = (1-sqrt(3x))
du = sqrt(3)/(2sqrt(x))
dv = -sqrt(3)/(2sqrt(x))

f'(x)=(((1-sqrt(3x))sqrt(3))/(2sqrt(x))+((1+sqrt(3x))sqrt(3))/(2sqrt(x)))/(1-sqrt(3x))^2

-f'(x) =(sqrt(3)(1-\cancel(sqrt(3x))+1+\cancel(sqrt(3x))))/(2sqrt(x)(1-sqrt(3x))^2

f'(x) =3/(sqrt(3x)(1-sqrt(3x))^2