Given x^6+12x^4+29x^2+18
Let t be a substitution for x^2color(green)(larr" Changed the wording")
Then t^3->(x^2)^3=x^6color(green)(larr" added explanation")
and t^2->(x^2)^2=x^4color(green)(larr" added explanation")
Set t^3+12t^2+29t+18=0
test for t=1
1+12+29+18=0 color(red)(larr"Fail")
test for t=-1
-1+12-29+18=0color(red)(larr" Works")
One of the factors is color(green)((t+1) ->(x^2+1)=> x=sqrt(-1))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A cubic as at least 1 solution if equated to 0 and at most 3
Assuming three solutions.
We already have (t+1)
Consider the constant of 18
We have 1xx18 or 2xx9
Consider the 12t^2 and note that 1+2+9=12 so lets run with this.
Try t=-2
(-2)^3+12(-2)^2+29(-2)+18 = 0 as required
Thus another factor is color(green)((t+2) -> (x^2+2) => x=sqrt(-2))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Try t=-9
(-9)^3+12(-9)^2+29(-9)+18=0 as required
Thus the last factor is color(green)((t+9)->(x^2+9)=>x=sqrt(-9))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(magenta)("Check so far")
(t+1)(t+2)(t+9)
(t+1)(t^2+11t+18)
t^3+11t^2+18t+t^2+11t+18
t^3+12t^2+29t+18->x^6+12x^4+29x^2+18 as required
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(magenta)(ul("You only requested factorisation"))
(x^2+1)(x^2+2)(x^2+9)larr" Factorisation"
Note that if x!in CC (Not complex numbers) then there is no solution to (x^2+1)(x^2+2)(x^2+9)=0 ie no roots. That is the plot does not cross the x-axis.
However, you do decide that x may belongs to the set of complex numbers (x inCC) then we have the theoretical roots:
[ (i)^2+1]color(white)(".")[(sqrt(2)color(white)("...")i)^2+2]color(white)(".")[(sqrt(3)color(white)("...")i)^2+9] =0