Question #029c3

1 Answer
Oct 2, 2017

Proved #1/[cos x(1+cos x)]= [tan x -sin x]/sin^3x#

Explanation:

Given, #1/[cos x(1+cos x)] = [tan x - sin x]/sin^3x#

We have to prove either way. Let me take Left Hand Side (L.H.S.)

#1/[cos x (1+cos x)]#

#rArr [1.(1-cos x)]/[cos x (1+cos x)(1-cos x)# [ multiply both sides by (1 - cos x)]

#rArr [1 - cos x]/[cos x (1 - cos^2 x)] #

#rArr [(1-cos x)/cos x]/sin^2x# [ as #sin^2x + cos^2x = 1. so, 1-cos^2x = sin^2x]#

#rArr [1/cos x - cos x/cos x]/sin^2x#

#rArr [(1/cos x -1)sin x]/[sin^2 x. sin x]# [ multiply both sides by sin x]

#rArr [sin x/cos x - sin x]/sin^3x#

#rArr (tan x - sin x)/sin^3x# = R. H. S.