Question #82a02

2 Answers
Oct 7, 2017

Here X= tan1(1(3)121+(3)12)

Explanation:

There is an identity tan(x+y) = tan(x)+tan(y)1tan(x)tan(y)

When we apply it to your equation we get
tan(x+60)=tan(x)+tan(60)1tan(x)tan(60)
As we know tan(60)=(3)12

Therefore tan(x)+(3)121(3)12tanx=1

tan(x)+(3)12=1(3)12tan(x)

tan(x)+(3)12tan(x)=1(3)12

tan(x)(1+(3)12)=1(3)12

tan(x)=1(3)121+(3)12

Therefore x=tan1(1(3)121+(3)12)

Oct 7, 2017

A different approach...
See the answer below...

Explanation:

tan(x+60)=1
tan(x+60)=tan45(mainly)

We might take further higher value...
x+60=45
x=15

Hope this helps...

It is same as tan1(131+3)...