Question #a4b0f

1 Answer
Oct 8, 2017

proved tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ

Explanation:

We have to prove, tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ

Let us take Left Hand Side (L.H.S.)
tanθ1cotθ+cotθ1tanθ

sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ

sinθcosθsinθcosθsinθ+cosθsinθcosθsinθcosθ

sinθcosθ.sinθsinθcosθ+cosθsinθ.cosθ(sinθcosθ)

sin2θcosθsinθcosθcos2θsinθsinθcosθ

sin2θcosθcos2θsinθsinθcosθ

sin3θcos3θsinθcosθsinθcosθ

(sinθcosθ)(sin2θ+sinθ.cosθ+cos2θ)sinθcosθ.1sinθcosθ

sin2θsinθcosθ+sinθ.cosθsinθ.cosθ+cos2θsinθ.cosθ

sinθcosθ+1+cosθsinθ

tanθ+1+cotθ = L. H. S.