If ab=bc=cd,then how do I prove that (ad)2=(bc)2+(ca)2+(bd)2?

1 Answer
Oct 8, 2017

See explanation

Explanation:

We want to show that:

(ad)2=(bc)2+(ca)2+(bd)2

Expanding the expression on the right:

b22bc+c2+c22ac+a2+b22bd+d2

Rearranging and combining terms:

a2+2b2+2c22ac2bc2bd+d2

Factoring out the 2:

a2+2(b2+c2acbcbd)+d2

Now let’s use the fact that ab=bc

Multiply everything by bc, so:

ac=b2

Same thing for bc=cd but multiply by cd, so:

bd=c2

Same thing for ab=cd but multiply by bd, so:

ad=bc

Find and replace these terms in our expression:

a2+2(b2+c2acbcbd)+d2

a2+2(ac+bdacadbd)+d2

Combine like terms inside the parentheses:

a2+2(ad)+d2=a22ad+d2

Factor:

(ad)2

Therefore:

(ad)2=(bc)2+(ca)2+(bd)2