How do you differentiate the given function? F(y) = (#1/y^2# - #3/y^4#)(y + 5y^3)

#3/y^4#

2 Answers

#F'(y) = 14/y^2 + 9/y^4 + 5#

Explanation:

STEP 1: Simplify the equation by rewriting with negative exponents. For example, #1/y^2# can be written as #y^-2#.

Your simplified equation should look at follows:
#F(y) = (y^-2 - 3y^-4)(y + 5y^3)#

STEP 2: In order to take the derivative for this problem, we will need to use the Product Rule.
(in case you forgot: #d/dx f(x)*g(x) = f'(x)g(x) + f(x)g'(x)#)
You can set f(y) equal to (#y^-2# - #3y^-4#) and g(y) equal to (y + #5y^3#)

STEP 3: You can now begin to differentiate the expression. Before simplification, #F'(y) = (-2y^-3 + 12y^-5)(y + 5y^3) + (y^-2 - 3y^-4)(1 + 15y^2)#.

STEP 4: You can now expand and simplify the equation!

#F'(y) = 58y^-2 - 10 + 12y^-4 + y^-2 + 15 - 3y^-4 - 45y^-2 + 5#

#F'(y) = 59y^-2 + 9y^-4 + 5#

#F'(y) = 14/y^2 + 9/y^4 + 5#

Oct 11, 2017

#f’(y)=5+(14/y^2)+(9/y^4)#

Explanation:

#f(y)=(1/y)+5y-(3/y^3)-(15/y)#
#f(y)=5y-(14/y)-(3/y^3)#

#f’(y)=5+(14/y^2)+(9/y^4)#