What is the arc length of the curve given by #x = t^2# and #y= 2t^2 = 1#, for # 1<t<3#?

1 Answer
Oct 12, 2017

The arc length is #8sqrt5#

Explanation:

For this problem, we will use this formula:

#int_1^3sqrt((dx/(dt))^2 + (dy/(dt))^2) dt#

First, let's find the derivatives of #x# and #y# with respect to #t#:

#dx/(dt) = d/(dt)(t^2) = 2t#

#dy/(dt) = d/(dt)(2t^2) = 4t#

Now we can plug these into the original formula:

#int_1^3sqrt((2t)^2 + (4t)^2) dt#

#int_1^3sqrt(4t^2+16t^2)dt#

#int_1^3sqrt(20t^2)dt#

#int_1^3sqrt(20) tdt#

#int_1^3 2sqrt5tdt#

#sqrt5 int_1^3 2tdt#

#sqrt5 [t^2]_1^3#

#sqrt5 (3^2 - 1^2)#

#8sqrt5#

Final Answer