What is the arc length of the curve given by #x = t^2# and #y= 2t^2 = 1#, for # 1<t<3#?
1 Answer
Oct 12, 2017
The arc length is
Explanation:
For this problem, we will use this formula:
#int_1^3sqrt((dx/(dt))^2 + (dy/(dt))^2) dt#
First, let's find the derivatives of
#dx/(dt) = d/(dt)(t^2) = 2t#
#dy/(dt) = d/(dt)(2t^2) = 4t#
Now we can plug these into the original formula:
#int_1^3sqrt((2t)^2 + (4t)^2) dt#
#int_1^3sqrt(4t^2+16t^2)dt#
#int_1^3sqrt(20t^2)dt#
#int_1^3sqrt(20) tdt#
#int_1^3 2sqrt5tdt#
#sqrt5 int_1^3 2tdt#
#sqrt5 [t^2]_1^3#
#sqrt5 (3^2 - 1^2)#
#8sqrt5#
Final Answer