How do you differentiate f(x)=sqrt(1-(3x-3)^2f(x)=1(3x3)2 using the chain rule.?

1 Answer
Oct 15, 2017

The derivative is color(red)(dy/dx=-(9(x-1))/sqrt(1-(3x-3)^2))dydx=9(x1)1(3x3)2

Explanation:

Let the function given be yy such that,

y=sqrt(1-(3x-3)^2)y=1(3x3)2

Now, it is better to simplify the term (1-(3x-3)^2)(1(3x3)2).

:.y=sqrt(1-9(x-1)^2)

:.y=sqrt(1-9(x^2-2x+1)

:.y=sqrt(1-9x^2+18x-9)

:.y=sqrt(-9x^2+18x-8)

:.y=(-9x^2+18x-8)^(1/2)

Now differentiating w.r.t x we get,

dy/dx=1/2cdot(-9x^2+18x-8)^(1/2-1)xxd/dx(-9x^2+18x-8)

:.dy/dx=1/(2sqrt(-9x^2+18x-8))xx(-18x+18-0)

Now, simplifying the equation rarr

:.dy/dx=-18/(2sqrt(1-(3x-3)^2))xx(x-1)

:.color(red)(dy/dx=-(9(x-1))/sqrt(1-(3x-3)^2)). (Answer)

Hope it Helps:)