Question #321de

1 Answer
Oct 16, 2017

#e^sinx(cos^2x)-e^sinx(sinx)#

Explanation:

We know that the first derivative is #e^sinx(cosx)#

To get the second derivative we apply the product rule:

Where #f'(g)+g'(f)#

Let's say that #f# is our #e^sinx# and #g# is #cosx#

We take the derivative of #f# and multiply it by #g# and add the derivative of #g# multiplied by #f#

#e^sinx(cosx)(cosx)+(-sinx)(e^sinx)#

Simplify:

#e^sinx(cos^2x)-e^sinx(sinx)#