Question #4e2fa

1 Answer
Oct 16, 2017

(y+7/2-sqrt37/2)(y+7/2+sqrt37/2)(y+72372)(y+72+372)

Explanation:

We will find the zeros of the trynomial by the quadratic formula
(the zeros of the generic trynomial

ax^2+bx+cax2+bx+c

are
x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a and the trynomial will be
a(x-x_1)(x-x_2)a(xx1)(xx2)

Then our zeros are:

y_(1,2)=(-7+-sqrt(7^2-4*3))/2=(-7+-sqrt37)/2=-7/2+-sqrt37/2y1,2=7±72432=7±372=72±372

and we can factor the given trynomial as:

(y+7/2-sqrt37/2)(y+7/2+sqrt37/2)(y+72372)(y+72+372)