Question #43bd9
1 Answer
Explanation:
I'm assuming you mean
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There's something very special about this polynomial. To see it, let's use one of the rules of exponents to write the first and last terms in a different way:
#a^(bc) = (a^b)^c#
Therefore, we can change our polynomial to look like this:
#e^(2x) + 2 + e^(-2x)#
#(e^x)^2 + 2 + (e^-x)^2#
Also, remember that
#(e^x)^2 + 2 + (1/e^x)^2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do you see it? This polynomial is actually a perfect square! Remember this formula?
#(a+b)^2 = a^2 + 2ab + b^2#
Well, if we use the fact that
#(e^x)^2 + 2(e^x)(1/e^x) + (1/e^x)^2#
This very clearly fits with our perfect square formula, so we can factor it like this:
#(e^x + 1/e^x)^2#
Or, to write it like the original problem did,
#(e^x + e^-x)^2#
Final Answer