We have to prove, #(sin A + cos A)^2 (sin A - cos A)^2 = 1 - sin^2 (2A)#
R.H.S.
#rArr (sin A + cos A)^2 (sin A - cos A)^2#
#rArr ( sin^2 A + 2 sin A cos A + cos^2 A)(sin^2 A - 2 sin A cos A + cos^2 A)#
#rArr ( 1 + 2 sin A cos A)(1 - 2 sin A cos A)# [As,#sin^2 A+cos^2 A=1 #]
#rArr (1 + sin 2A)(1 - sin 2a)# [As, 2 sin A cos A = sin 2A]
#rArr 1 - sin^2 2A# [ As formula, #(a + b )( a - b) = a^2 - b^2#]
#rArr R.H.S.#