Question #eb60c

1 Answer
Oct 18, 2017

dy/dx=e^(3x-x^3)(3-3x^2)dydx=e3xx3(33x2)

Explanation:

The derivative of e^ueu, where uu is some function of xx, is dy/dx=e^u*(du)/dxdydx=eududx.

So, in this case, the derivative is:

dy/dx=e^(3x-x^3)*d/dx(3x-x^3)dydx=e3xx3ddx(3xx3)

Simplifying gives:

dy/dx=e^(3x-x^3)(3-3x^2)dydx=e3xx3(33x2)